nanns

Asymmetric Synthesis of Substituted anti-β-Fluorophenylalanines

Stephen G. Davies,* Ai M. Fletcher, Aileen B. Frost, Paul M. Roberts, and James E. Thomson

Department of Chemis[try](#page-3-0), Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

S Supporting Information

[AB](#page-3-0)STRACT: [A range of s](#page-3-0)ubstituted anti-β-fluorophenylalanines was produced from the corresponding enantiopure α -hydroxy- β -amino esters using a stereospecific XtalFluor-E promoted rearrangement procedure as the key step. The requisite substrates are readily produced via aminohydroxylation of an α , β -unsaturated ester using our lithium amide conjugate addition methodology and, following rearrangement,

deprotection of the resultant enantiopure β-fluoro-α-amino esters gives the corresponding enantiopure anti-βfluorophenylalanines in good yield and high diastereoisomeric purity.

The incorporation of fluorine is known to dramatically alter
the biological properties of organic molecules, and
the biological properties of organic molecules, and fluorination has become an established strategy for modifying lead compounds in medicinal chemistry.¹ Fluorinated α -amino acids have attracted significant attention in recent years, with several studies focusing on their incor[po](#page-3-0)ration into synthetic proteins and the resulting impact this may have on secondary structure and stability. 2 This research has justified synthetic efforts targeting fluorinated α -amino acids,^{3,4} with approaches rang[in](#page-3-0)g from ring-opening of aziridines with fluoride⁵ to metalcatalyzed cross-couplings⁶ being employed.

As part of our research program concerning the [as](#page-3-0)ymmetric synthesis of functionali[ze](#page-3-0)d amino $acids$, we have recently reported an efficient protocol for the asymmetric synthesis of β -hydroxy- α -amino a[c](#page-3-0)ids. Stereospecific rearrangement of enantiopure $anti-\alpha$ -hydroxy- β -amino esters 1 (which are readily derived from the corresponding α , β -unsaturated esters using our diastereoselective aminohydroxylation procedure⁸) upon treatment with either $Ms₂O$ or $Tf₂O$ promoted formation of the corresponding aziridinium ions 2, which was followed by regioselective ring-opening with H₂O to give β -hydroxy- α amino esters 3 in >99:1 dr. Subsequent N-deprotection and ester hydrolysis gave enantiopure anti-β-hydroxy-α-amino acids 4 in good yield and high diastereoisomeric purity (Figure 1).9

We envisaged that application of a similar protocol employing a deoxofluorinating agent to promote the rearrangement [p](#page-3-0)rocess (i.e., also proceeding via the intermediacy of an aziridinium ion) would allow the introduction of a β -fluoro substituent.¹⁰ XtalFluor-E (in combination with $Et_3N·3HF$) was originally reported as an efficient deoxofluorinating reagent 11 but has al[so](#page-3-0) found utility as a coupling reagent for amidation 12 and a cyclodehydration agent.¹³ It has also been us[ed](#page-3-0) as an OHactivator in combination with other nucleophiles fo[r t](#page-3-0)he ring expansion of prolinol[s](#page-3-0) and the halogenation of primary alcohols, 14 and has also been employed in the ring-opening fluorination of N-tosyl substituted aziridines.¹⁵ Herein we describe [a](#page-3-0) XtalFluor-E promoted rearrangement procedure as

the key step in the synthesis of several enantiopure *anti-β-fluoro*phenylalanines.

Our initial investigations within this area focused on using the established reagent combination of XtalFluor-E and $Et_3N·3HF^{11}$ for the rearrangement and deoxofluorination of racemic anti- α hydroxy-β-amino ester 5. ⁹ Treatment of 5 with XtalFluor-E a[nd](#page-3-0) Et₃N·3HF gave *anti-β-fluoro-α*-amino ester 6 as a single diastereoisomer (>99:1 [d](#page-3-0)r), which was isolated in 94% yield (Scheme 1). The relative anti-configuration within 6 was established unambiguously via single crystal X-ray diffraction analysis ([Fi](#page-1-0)gure 2).¹⁶ The formation of 6 in this reaction is entirely consistent with our proposed mechanism, whereby XtalFluor-E pro[mo](#page-1-0)t[es](#page-3-0) formation of the corresponding aziridinium ion which is then regioselectively ring-opened by fluoride at the $C(3)$ -position; this stereochemical outcome is in complete accordance with that observed upon formation of the corresponding anti-β-hydroxy-α-amino esters 3. ⁹ Reaction of enantiopure α -hydroxy- β -amino ester $7^{7c,17}$ under the same conditions produced β-fluoro-α-amino ester 8 in [8](#page-3-0)1% yield and

Received: March 26, 2015 Published: April 14, 2015

Scheme 1

Figure 2. X-ray crystal structures of (RS,SR) -6 [left] and $(2R,3S, \alpha R)$ -8 [right] (selected H atoms are omitted for clarity).

>99:1 dr, and reaction of $β$ -hydroxy-α-amino ester 9^9 under identical conditions also produced 8 in 75% yield and >99:1 dr (Scheme 1). The relative configuration within 8 was est[ab](#page-3-0)lished unambiguously via single crystal X-ray diffraction analysis (Figure 2),¹⁶ and the absolute $(2R,3S, \alpha R)$ -configuration of 8 was assigned by reference to the known (R) -configuration of the α -methylb[enz](#page-3-0)yl fragment. Furthermore, the determination of a Flack x parameter¹⁸ of -0.11(11) for the structure of 8 confirmed this assignment. These data therefore confirm the intermediacy of the [co](#page-3-0)rresponding aziridinium ion upon reaction of both regioisomeric substrates 7 and 9.

Substituting $Et_3N·3HF$ for either TMSN₃ or TMSOAc produced the corresponding azide 10 or acetate 11^{19} as single diastereoisomers (>99:1 dr) in 58% and 41% isolated yield, respectively (Scheme 2). The relative configuration[s w](#page-3-0)ithin 10 and 11 were established unambiguously via single crystal X-ray diffraction analyses (Figure 3),¹⁶ and the absolute (2S,3S, α R)configurations of 10 and 11 were assigned in each case by reference to the known (R) -con[fi](#page-3-0)guration of the α -methylbenzyl fragment. Furthermore, the determination of Flack x parameters¹⁸ of $-0.1(2)$ and $-0.12(15)$ for the structures of 10 and 11, respectively, confirmed these assignments. Subsequent tandem red[uc](#page-3-0)tion/hydrogenolysis of 10 followed by hydrolysis of the tert-butyl ester moiety gave anti- α , β -diamino acid 12, which was isolated in 82% yield (from 10) and >99:1 dr after purification on Dowex 50WX8-200 ion-exchange resin (Scheme 2).²⁰ The specific rotation of this sample of 12 $\{[\alpha]_{\mathrm{D}}^{\mathrm{20}}$ –7.2 (c 0.4 in 6 N HCl)} was found to be equal to the literature value rep[ort](#page-3-0)ed by Lin et al. claimed for *ent*-12 {lit.²¹ $[\alpha]_{D}^{20}$ –8.0 (*c* 0.65 in 6 N HCl)}, which was reported without evidence for their stereo-

Figure 3. X-ray crystal structures of $(2S,3S, \alpha R)$ -10 [left] and $(2S, 3S, \alpha R)$ -11 [right] (selected H atoms are omitted for clarity).

chemical assignment in an enantioselective synthesis.²¹ As our stereochemical assignment for 12 is completely secure, these specific rotation data therefore suggest that the stere[oc](#page-3-0)hemical assignment of Lin et al. is in error.

Attempted N-deprotection of $β$ -fluoro-α-amino ester 8 via several hydrogenolytic protocols resulted in substantial competitive defluorination. In the hope that alternative deprotection strategies would be more efficacious, the corresponding N-allyl substituted compound 14 was prepared in 96% yield and >99:1 dr from the known α -hydroxy- β -amino ester 13.²² Removal of the N-α-methylbenzyl group within 14 was achieved via N‑oxidation with m-CPBA followed by in situ C[ope](#page-3-0) elimination of the resultant N-oxide 15, which gave hydroxylamine 16 in only 13% isolated yield. The yields of this reaction were found to be somewhat variable, and neither attempted N-deallylation of 16 nor attempted reduction of the N−O bond within 16 was successful. N-Deallylation of 14, however, upon treatment with $Pd(PPh₃)₄$ and N,N-dimethylbarbituric acid (DMBA) gave 17 in 39% yield and >99:1 dr. Sequential treatment of 17 with NaBr O_3^{23} followed by HCl effected removal of the N- α methylbenzyl group and hydrolysis of the ester moiety to give $(2R,3S)$ -*[β](#page-3-0)*-fluorophenylalanine 18, which was isolated as the corresponding hydrochloride salt 18·HCl in 47% yield and >99:1 dr. Similar treatment of the N-benzyl substituted analogue 8 gave 18 directly in 53% isolated yield after treatment of 18·HCl with propylene oxide²⁴ (Scheme 3).

The spectroscopic data for 18 were in excellent agreement with literature [valu](#page-3-0)es.^{4f,25} H[ow](#page-2-0)ever, the specific rotation for 18 was found to be highly solvent dependent, with a complete

reversal in the specific rotation of 18 being observed upon changing the solvent from H₂O to MeOH $\{[\alpha]_{\mathrm{D}}^{\mathrm{20}}$ +14.4 (c 0.5 in H_{2}O); $\left[\alpha\right]_{\text{D}}$ ²⁰ -13.3 (c 0.3 in MeOH)}. While this phenomenon is interesting in its own right and has previously been observed in related systems,²⁶ the specific rotation recorded in MeOH was found to be equal to the value for ent-18 reported by Davis et al. {lit.^{4f} $[\alpha]_D$ ²³ -[14.](#page-3-0)5 (c 0.4 in MeOH)}. As our stereochemical assignment for 18 is completely secure, this literature value ap[pea](#page-3-0)rs to be incorrect; however, this discrepancy can easily be accounted for, as the literature value was most likely recorded in $H₂O$, and not MeOH as originally reported,^{26,27} and the stereochemical assignments of Davis et al.^{4f} therefore remain secure.

The substrate scope of this protocol was [ev](#page-3-0)aluated next upon subjection of a range of known anti- α -hydroxy- β -amino esters 19−22⁹ to XtalFluor-E and Et₃N·3HF, which gave *anti-β*-fluoroα-amino esters 24−27 in 63−92% yield and >99:1 dr. In the case of 23 ($X = 4$ -OMe),⁹ however, an 80:20 mixture of 28 and the corresponding 1,2,3,4-tetrahydroisoquinolines $\begin{bmatrix} 33 + 34 \end{bmatrix}$ was observed in the cr[ud](#page-3-0)e reaction mixture, from which 28 was isolated in 44% yield and >99:1 dr, and a 68:32 mixture of 33 $(>99:1 \text{ dr})$ and 34 $(>99:1 \text{ dr})$, respectively, was isolated in 8% combined yield (Scheme 4). The relative 3,4-anti-configurations within 33 and 34 were assigned from the diagnostic values of the H NMR 3 J coupling constants observed between the $\mathrm{C}(3)H$ and C(4)H protons (for 33 $^3J_{3,4} = 3.7$ Hz; for 34 $^3J_{3,4} = 2.4$ Hz).²⁸ Presumably, 33 and 34 are formed as a result of ring-opening of the aziridinium intermediate to give the corresponding benzy[lic](#page-3-0) carbonium ion (which is assisted by the presence of the electron donating p-methoxy group), followed by competitive Friedel−

Figure 4. X-ray crystal structures of $(2R,3S,\alpha R)$ -25 [left] and $(2R,3S, \alpha R)$ -27 [right] (selected H atoms are omitted for clarity).

Crafts alkylation-type cyclization of either the N-α-methylbenzyl or N-benzyl groups, respectively. For both $25 (X = 3-F)$ and 27 $(X = 4-F)$, their relative configurations were established unambiguously via single crystal X-ray diffraction analyses (Figure 4).¹⁶ The absolute $(2R,3S, \alpha R)$ -configurations of 25 and 27 were assigned in each case by reference to the known (R) c[on](#page-3-0)figuration of the α -methylbenzyl fragment. Furthermore, the determination of Flack x parameters¹⁸ of $0.02(12)$ and $-0.01(10)$ for the structures of 25 and 27, respectively, confirmed these assignments. The r[ela](#page-3-0)tive and absolute configurations of 24, 26, and 28 were assigned by analogy to those of 8, 25, and 27. Sequential treatment of 24, 25, and 27 with NaBrO₃ and HCl gave the corresponding β -fluoro- α -amino acids 29, 30, and 32 in good yield (57−72%) as single diastereoisomers (>99:1 dr) in each case. For deprotection of **26** (X = 3-OMe), however, bromination at the $C(6')$ -position was also observed upon treatment with $NaBrO₃$ during the N‑debenzylation step, giving 31 in 30% yield and >99:1 dr (Scheme 4). Attempted deprotection of 28 (X = 4-OMe) led to substantial decomposition, presumably due to the increased lability of the β -fluoro moiety in this case.

In conclusion, a range of five enantiopure anti-β-fluorophenylalanines have been prepared in three steps from the corresponding α , β -unsaturated esters. Diastereoselective aminohydroxylation of the α,β-unsaturated esters was followed by the stereospecific XtalFluor-E promoted rearrangement of the resultant *anti-α*-hydroxy- β -amino esters to give the corresponding anti-β-fluoro-α-amino esters in >99:1 dr. Subsequent N‑deprotection and ester hydrolysis of these fluorinated substrates was achieved via sequential treatment with $NaBrO₃$ and HCl to give the *anti-β-fluorophenylalanines* in good yield and high diastereoisomeric purity. This is the most concise strategy to access enantiopure anti-β-fluorophenylalanines reported to date.

■ ASSOCIATED CONTENT

S Supporting Information

Experimental procedures, characterization data, copies of ${}^{1}H$ and 13 C NMR spectra, and crystallographic data (for structures CCDC 1054001−1054006). This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: steve.davies@chem.ox.ac.uk.

Notes

The authors declare no competing financial interest.

■ REFERENCES

(1) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

(2) (a) Salwiczek, M.; Nyakatura, E. K.; Gerling, U. I. M.; Ye, S.; Koksch, B. Chem. Soc. Rev. 2012, 41, 2135. (b) Buer, B. C.; Marsh, E. N. G. Protein Sci. 2012, 21, 453. (c) Marsh, E. N. G. Acc. Chem. Res. 2014, 47, 2878. (d) Gerling, U. I. M.; Salwiczek, M.; Cadicamo, C. D.; Erdbrink, H.; Czekelius, C.; Grage, S. L.; Wadhwani, P.; Ulrich, A. S.; Behrends, M.; Haufe, G.; Koksch, B. Chem. Sci. 2014, 5, 819.

(3) Qui, X.-L.; Qing, F.-L. Eur. J. Org. Chem. 2011, 3261.

(4) For representative examples of the syntheses of β -fluoro- α -amino acids, see: (a) Loy, R. S.; Hudliky, M. J. Fluorine Chem. 1976, 7, 421. (b) Tsushima, T.; Sato, T.; Tsuji, T. Tetrahedron Lett. 1980, 21, 3591. (c) Ayi, A.; Guedj, R. J. Chem. Soc., Perkin Trans. 1 1983, 2045. (d) Pansare, S. V.; Vederas, J. C. J. Org. Chem. 1987, 52, 4804. (e) Kaneko, C.; Chiba, J.; Toyota, A.; Sato, M. Chem. Pharm. Bull. 1995, 43, 760. (f) Davis, F. A.; Srirajan, V.; Titus, D. D. J. Org. Chem. 1999, 64, 6931. (g) Lu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912.

(5) (a) Ayi, A. I.; Remli, M.; Guedj, R. J. Fluorine Chem. 1981, 18, 93. (b) Tsushima, T.; Kawada, K.; Nishikawa, J.; Sato, T.; Tori, K.; Tsuji, T. J. Org. Chem. 1984, 49, 1163.

(6) Shi, G.; Cao, Z.; Zhang, X. J. Org. Chem. 1985, 60, 6608.

(7) (a) Davies, S. G.; Fletcher, A. M.; Foster, E. M.; Lee, J. A.; Roberts, P. M.; Thomson, J. E. J. Org. Chem. 2013, 78, 2500. (b) Davies, S. G.; Foster, E. M.; Lee, J. A.; Roberts, P. M.; Thomson, J. E. Tetrahedron 2013, 69, 8680. (c) Davies, S. G.; Fletcher, A. M.; Frost, A. B.; Lee, J. A.; Roberts, P. M.; Thomson, J. E. Tetrahedron 2013, 69, 8885. (d) Csatayová, K.; Davies, S. G.; Fletcher, A. M.; Ford, J. G.; Klauber, D. J.; Roberts, P. M.; Thomson, J. E. J. Org. Chem. 2014, 79, 10932. (e) Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Shah, R. S.; Thompson, A. L.; Thomson, J. E. Org. Lett. 2014, 16, 1354.

(8) (a) Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry 2005, 16, 2833. (b) Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E. Tetrahedron: Asymmetry 2012, 23, 1111.

(9) Davies, S. G.; Fletcher, A. M.; Frost, A. B.; Roberts, P. M.; Thomson, J. E. Tetrahedron 2014, 70, 5849.

(10) For selected examples concerning the ring-opening of aziridinium ions with a fluorinating agent, see: (a) Gani, D.; Hitchcock, P. B.; Young, D. W. J. Chem. Soc., Chem. Commun. 1983, 898. (b) Floreancig, P. E.; Swalley, S. E.; Trauger, J. W.; Dervan, P. B. J. Am. Chem. Soc. 2000, 122, 6342. (c) Hook, D. F.; Gessier, F.; Noti, C.; Kast, P.; Seebach, D. ChemBioChem 2004, 5, 691. (d) Ye, C.; Shreeve, J. M. J. Fluorine Chem. 2004, 125, 1869. (e) Déchamps, I.; Gomez Pardo, D.; Cossy, J. Synlett 2007, 263. (f) Déchamps, I.; Gomez Pardo, D.; Cossy, J. Eur. J. Org. Chem. 2007, 4224. (g) Duthion, B.; Gomez Pardo, D.; Cossy, J. Org. Lett. 2010, 12, 4620. (h) Orliac, A.; Routier, J.; Charvillon, F. B.; Sauer, W. H. B.; Bombrun, A.; Kulkarni, S. S.; Gomez Pardo, D.; Cossy, J. Chem.Eur. J. 2014, 20, 3813. (i) Chong, H.-S.; Sun, X.; Chen, Y.; Wang, M. Tetrahedron Lett. 2015, 56, 946.

(11) (a) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.; Couturier, M.; LaFlamme, F.; L'Heureux, A. Org. Lett. 2009, 11, 5050. (b) L'Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. J. Org. Chem. 2010, 75, 3401.

(12) Orliac, A.; Gomez Pardo, D.; Bombrun, A.; Cossy, J. Org. Lett. 2013, 15, 902.

(13) Pouliot, M.-F.; Angers, L.; Hamel, J.-D.; Paquin, J.-F. Org. Biomol. Chem. 2012, 10, 988.

(14) (a) Cochi, A.; Gomez Pardo, D.; Cossy, J. Org. Lett. 2011, 13, 4442. (b) Lam, Y.; Houk, K. N.; Cossy, J.; Gomez Pardo, D.; Cochi, A. Helv. Chim. Acta 2012, 95, 2265. (c) Pouliot, M.-F.; Mahe, O.; Hamel, J.- ́ D.; Desroches, J.; Paquin, J.-F. Org. Lett. 2012, 14, 5428.

(15) Nonn, M.; Kiss, L.; Haukka, M.; Fustero, S.; Fülöp, F. Org. Lett. 2015, 17, 1074.

(16) Crystallographic data (excluding structure factors) for 6, 8, 10, 11, 25, and 27 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 1054001− 1054006, respectively.

(17) Bunnage, M. E.; Chernega, A. N.; Davies, S. G.; Goodwin, C. J. J. Chem. Soc., Perkin Trans. 1 1994, 2373.

(18) (a) Flack, H. D. Acta Crystallogr., Sect. A 1983, 39, 876. (b) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143.

(19) A 76:24 mixture of 11 and 8, respectively, was observed in the ${}^{1}\mathrm{H}$ NMR spectrum of the crude reaction mixture, from which only 11 was isolated in 41% yield and >99:1 dr.

(20) The β -acetoxy substituted analogue 11 was not deprotected to the corresponding $β$ -hydroxy-α-amino acid, as the overall yield could not be superior to our previous synthesis of this target compound from 7; see ref 9.

(21) Zhou, X.-T.; Lin, Y.-R.; Dai, L.-X. Tetrahedron: Asymmetry 1999, 10, 855.

(22) (a) Davies, S. G.; Polywka, M. E. C.; Fenwick, D. R.; Reed, F. PCT Int. Appl. (1995), WO 9518134. (b) Davies, S. G.; Fenwick, D. R.; Ichihara, O. Tetrahedron: Asymmetry 1997, 8, 3387.

(23) Corr, M. J.; O'Hagan, D. J. Fluorine Chem. 2013, 155, 72.

(24) O'Donnell, M. J.; Barney, C. L.; McCarthy, J. R. Tetrahedron Lett. 1985, 26, 3067.

(25) Kaneko, C.; Chiba, J.; Toyota, A.; Sato, M. Chem. Pharm. Bull. 1995, 43, 760.

(26) Davis, F. A. 2015, personal communication.

(27) It was noted that the specific rotations for all the other β -fluoro- α amino acids reported in ref 4f were recorded in $\rm H_2O$ and not MeOH.

(28) ¹H NMR coupling constants in the order of ³ $J_{3,4} = 1.5 - 4.0$ Hz are usually observed for 3,4-anti-1,2,3,4-tetrahydroisoquinolines, whereas values of $3_{3,4} = 5.5 - 6.0$ Hz are typically observed for 3,4-syn-1,2,3,4tetrahydroisoquinolines; see: (a) Brozda, D.; Koroniak, L.; Rozwadowska, M. D. Tetrahedron: Asymmetry 2000, 11, 3017. (b) Chen, W.; Cui, J.; Zhu, Y.; Hu, X.; Mo, W. J. Org. Chem. 2012, 77, 1585. (c) Hammad, S. F.; Smith, F. T. J. Heterocycl. Chem. 2013, 50, 114.